Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 16(2): plae013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38601215

RESUMO

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.

2.
Methods Mol Biol ; 2798: 11-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587733

RESUMO

Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds. Therefore, their detection, identification and localization in vivo or in biological preparations is a priority for a deeper understanding of their role in (concurrent) regulation of plant growth and defence responses. Here, we present two EPR spin traps, abbreviated as TEMPD-HCl and DEPMPO, to detect and identify ROS in complex systems, such as isolated thylakoids, together with some hints and cautions to perform reliable spin trapping experiments.


Assuntos
Superóxidos , Tilacoides , Oxigênio Singlete , Espécies Reativas de Oxigênio , Detecção de Spin , Ânions
3.
Methods Mol Biol ; 2798: 27-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587734

RESUMO

Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.


Assuntos
Luminescência , Oxigênio Singlete , Oxigênio , Clorofila , Corantes Fluorescentes
4.
Front Plant Sci ; 14: 1118698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818856

RESUMO

Functional symbiosis with fungal endophytes can help plants adapt to environmental stress. Diaporthe atlantica is one of the most abundant fungal taxa associated with roots of Festuca rubra subsp. pruinosa, a grass growing in sea cliffs. This study aimed to investigate the ability of a strain of this fungus to ameliorate the impact of drought stress on tomato plants. In a greenhouse experiment, tomato plants were inoculated with Diaporthe atlantica strain EB4 and exposed to two alternative water regimes: well-watered and drought stress. Several physiological and biochemical plant parameters were evaluated. Inoculation with Diaporthe promoted plant growth in both water treatments. A significant interactive effect of Diaporthe-inoculation and water-regime showed that symbiotic plants had higher photosynthetic capacity, water-use efficiency, nutrient uptake (N, P, K, Fe and Zn), and proline content under drought stress, but not under well-watered conditions. In addition, Diaporthe improved the enzymatic antioxidant response of plants under drought, through an induced mechanism, in which catalase activity was modulated and conferred protection against reactive oxygen species generation during stress. The results support that Diaporthe atlantica plays a positive role in the modulation of tomato plant responses to drought stress by combining various processes such as improving photosynthetic capacity, nutrient uptake, enzymatic antioxidant response and osmo-protectant accumulation. Thus, drought stress in tomato can be enhanced with symbiotic fungi.

6.
Plants (Basel) ; 11(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145784

RESUMO

Triticum aestivum L. cv. Gazul is a spring wheat widely cultivated in Castilla y León (Spain). Potted plants were grown in a scenario emulating the climate change environmental conditions expected by the end of this century, i.e., with elevated CO2 and high temperature under two water deficit regimes: long (LWD) and terminal (TWD). Changes in biomass and morphology, the content of proline (Pro), ascorbate (AsA) and glutathione (GSH), and enzymatic antioxidant activities were analyzed in flag leaves and ears. Additionally, leaf gas exchange was measured. LWD caused a decrease in biomass and AsA content but an increase in Pro content and catalase and GSH reductase activities in flag leaves, whereas TWD produced no significant changes. Photosynthesis was enhanced under both water deficit regimes. Increase in superoxide dismutase activity and Pro content was only observed in ears under TWD. The lack of a more acute effect of LWD and TWD on both organs was attributed to the ROS relieving effect of elevated CO2. Gazul acted as a drought tolerant variety with anisohydric behavior. A multifactorial analysis showed better adaptation of ears to water deficit than flag leaves, underlining the importance of this finding for breeding programs to improve grain yield under future climate change.

7.
Plants (Basel) ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451641

RESUMO

Global warming will inevitably affect crop development and productivity, increasing uncertainty regarding food production. The exploitation of genotypic variability can be a promising approach for selecting improved crop varieties that can counteract the adverse effects of future climate change. We investigated the natural variation in yield performance under combined elevated CO2 and high-temperature conditions in a set of 60 bread wheat genotypes (59 of the 8TH HTWSN CIMMYT collection and Gazul). Plant height, biomass production, yield components and phenological traits were assessed. Large variations in the selected traits were observed across genotypes. The CIMMYT genotypes showed higher biomass and grain yield when compared to Gazul, indicating that the former performed better than the latter under the studied environmental conditions. Principal component and hierarchical clustering analyses revealed that the 60 wheat genotypes employed different strategies to achieve final grain yield, highlighting that the genotypes that can preferentially increase grain and ear numbers per plant will display better yield responses under combined elevated levels of CO2 and temperature. This study demonstrates the success of the breeding programs under warmer temperatures and the plants' capacity to respond to the concurrence of certain environmental factors, opening new opportunities for the selection of widely adapted climate-resilient wheat genotypes.

8.
Front Plant Sci ; 12: 695717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305985

RESUMO

Festuca rubra subsp. pruinosa is a perennial grass that inhabits sea cliffs, a habitat where salinity and low nutrient availability occur. These plants have a rich fungal microbiome, and particularly common are their associations with Epichloë festucae in aboveground tissues and with Fusarium oxysporum and Periconia macrospinosa in roots. In this study, we hypothesized that these fungi could affect the performance of F. rubra plants under salinity, being important complements for plant habitat adaptation. Two lines of F. rubra, each one consisting of Epichloë-infected and Epichloë-free clones, were inoculated with the root endophytes (F. oxysporum and P. macrospinosa) and subjected to a salinity treatment. Under salinity, plants symbiotic with Epichloë had lower Na+ content than non-symbiotic plants, but this effect was not translated into plant growth. P. macrospinosa promoted leaf and root growth in the presence and absence of salinity, and F. oxysporum promoted leaf and root growth in the presence and absence of salinity, plus a decrease in leaf Na+ content under salinity. The growth responses could be due to functions related to improved nutrient acquisition, while the reduction of Na+ content might be associated with salinity tolerance and plant survival in the long term. Each of these three components of the F. rubra core mycobiome contributed with different functions, which are beneficial and complementary for plant adaptation to its habitat in sea cliffs. Although our results do not support an obvious role of Epichloë itself in FRP salt tolerance, there is evidence that Epichloë can interact with root endophytes, affecting host plant performance.

9.
Plants (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064280

RESUMO

The progressive rise in atmospheric CO2 concentrations and temperature associated with climate change is predicted to have a major impact on the productivity and quality of food crops. Therefore, food security is highly dependent on climate change. Following a survey with 60 bread wheat genotypes, here we investigated the genetic variation in grain yield and nutritional quality among 10 of these genotypes grown under elevated CO2 and temperature. With this purpose, the biomass production, grain yield-related traits, the grain concentration of starch, total protein, phenolic compounds, and mineral nutrients, together with the total antioxidant capacity, were determined. Variation among genotypes was found for almost all the studied traits. Higher grain and ear numbers were associated with increased grain yield but decreased grain total protein concentration and minerals such as Cu, Fe, Mg, Na, P, and Zn. Mineral nutrients were mainly associated with wheat biomass, whereas protein concentration was affected by plant biomass and yield-related traits. Associations among different nutrients and promising nutrient concentrations in some wheat genotypes were also found. This study demonstrates that the exploration of genetic diversity is a powerful approach, not only for selecting genotypes with improved quality, but also for dissecting the effect of the environment on grain yield and nutritional composition.

10.
Plant Sci ; 303: 110762, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487346

RESUMO

Celtica gigantea(= Stipa gigantea) is a large perennial grass which grows in nutrient-poor sandy soils in semiarid zones of the western Iberian Peninsula. The purpose of this work was to find out if culturable fungal symbionts isolated from roots of this wild grass could have growth promoting activity in tritordeum, a hybrid cereal for human consumption. A survey of fungi from the root endosphere of C. gigantea produced an isolate collection consisting of 60 different taxa, mostly ascomycetes. Fungal strains were inoculated into tritordeum plants in order to evaluate their effect in leaf and root biomass, nutrient content, and total antioxidant capacity. Two consecutive screening processes were made to test endophyte effects in plants. In the first screening, 66 strains were inoculated into seedlings by dipping roots in a liquid suspension of inoculum. In the second screening, 13 strains selected from the first screening were inoculated by sowing seeds in a substrate containing inoculum. The inoculation method used in the second screening involved less labor and plant manipulation and improved the quantity and quality of the inoculum, making it more appropriate for big scale experimental inoculation procedures. Several fungal strains promoted leaf or root growth. In particular, a strain belonging to the genus Diaporthe caused an increase in leaf and root biomass in both screening processes, suggesting that this endophyte might have a good potential for field application in tritordeum.


Assuntos
Ascomicetos/fisiologia , Produção Agrícola/métodos , Grão Comestível/crescimento & desenvolvimento , Endófitos/metabolismo , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Ascomicetos/metabolismo , Grão Comestível/microbiologia , Endófitos/genética , Filogenia , Melhoramento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
11.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052525

RESUMO

A rapid and high throughput protocol to measure the catalase activity in vitro has been designed. Catalase is an enzyme with unusual kinetic properties because it does not follow the standard Michaelis-Menten model and is inactivated by H2O2. This makes the analysis of the two rate equations of the second-ordered reactions of the kinetic model rather complex. A two-degree polynomial fitting of the experimental data is proposed after transforming the exponential form of the integrated rate equation of the [H2O2] into a polynomial using the Taylor series. The fitting is validated by establishing an experimental linear relationship between the initial rate of the H2O2 decomposition and the protein concentration, regardless of the suicide inactivation that catalase might undergo beyond t > 0. In addition, experimental considerations are taken into account to avoid statistical bias in the analysis of the catalase activity. ANOVA analyses show that the proposed protocol can be utilized to measure the initial rate of the H2O2 decomposition by catalase in 32 samples in triplicates if kept below 8 mM min-1 in the microplate wells. These kinetic and statistical analyses can pave the way for other antioxidant enzyme activity assays in microplate readers at small scale and low cost.

12.
Molecules ; 24(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266247

RESUMO

A chemiluminescence probe for singlet oxygen 1O2 (SOCL) was investigated in phosphate buffer saline (PBS), either in the absence of proteins or containing bovine serum albumin (BSA). In the protein-free PBS, the reactivity of SOCL for methylene blue (MB)-photosensitized 1O2 was found to be moderate or low. The reaction yield increased with temperature and/or concentration of dissolved molecular oxygen. Unexpectedly, the presence of BSA boosted both the emissive nature and the thermal stability of the phenoxy-dioxetane intermediate formed in the chemiexcitation pathway. Isothermal titration calorimetry showed that SOCL has a moderate binding affinity for BSA and that entropy forces drive the formation of the SOCL-BSA complex. A model with two identical and independent binding sites was used to fit the binding isotherm data. Co-operative binding was observed when MB was present. Local viscosity factors and/or conformational restrictions of the BSA-bound SOCL phenoxy-dioxetane were proposed to contribute to the formation of the highly emissive benzoate ester during the chemically initiated electron exchange luminescence (CIEEL) process. These results led us to conclude that hydrophobic interactions of the SOCL with proteins can modify the emissive nature of its phenoxy-dioxetane, which should be taken into account when using SOCL or its cell-penetrating peptide derivative in living cells.


Assuntos
Medições Luminescentes , Modelos Químicos , Modelos Moleculares , Sondas Moleculares/química , Soroalbumina Bovina/química , Oxigênio Singlete/química , Animais , Bovinos
13.
Bull Math Biol ; 82(1): 3, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31919660

RESUMO

The asymptotes and transition points of the net CO2 assimilation (A/Ci) rate curves of the steady-state Farquhar-von Caemmerer-Berry (FvCB) model for leaf photosynthesis of C3 plants are examined in a theoretical study, which begins from the exploration of the standard equations of hyperbolae after rotating the coordinate system. The analysis of the A/Ci quadratic equations of the three limitation states of the FvCB model-abbreviated as Ac, Aj and Ap-allows us to conclude that their oblique asymptotes have a common slope that depends only on the mesophyll conductance to CO2 diffusion (gm). The limiting values for the transition points between any two states of the three limitation states c, j and p do not depend on gm, and the results are therefore valid for rectangular and non-rectangular hyperbola equations of the FvCB model. The analysis of the variation of the slopes of the asymptotes with gm casts doubts about the fulfilment of the steady-state conditions, particularly, when the net CO2 assimilation rate is inhibited at high CO2 concentrations. The application of the theoretical analysis to extended steady-state FvCB models, where the hyperbola equations of Ac, Aj and Ap are modified to accommodate nitrogen assimilation and amino acids export via the photorespiratory pathway, is also discussed.


Assuntos
Fotossíntese , Folhas de Planta , Difusão , Frutas/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Fenômenos Físicos , Folhas de Planta/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(48): 12725-12730, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133410

RESUMO

Flavoproteins participate in a wide variety of physiologically relevant processes that typically involve redox reactions. Within this protein superfamily, there exists a group that is able to transfer reducing equivalents from FAD to a redox-active disulfide bridge, which further reduces disulfide bridges in target proteins to regulate their structure and function. We have identified a previously undescribed type of flavin enzyme that is exclusive to oxygenic photosynthetic prokaryotes and that is based on the primary sequence that had been assigned as an NADPH-dependent thioredoxin reductase (NTR). However, our experimental data show that the protein does not transfer reducing equivalents from flavins to disulfides as in NTRs but functions in the opposite direction. High-resolution structures of the protein from Gloeobacter violaceus and Synechocystis sp. PCC6803 obtained by X-ray crystallography showed two juxtaposed FAD molecules per monomer in redox communication with an active disulfide bridge in a variant of the fold adopted by NTRs. We have tentatively named the flavoprotein "DDOR" (diflavin-linked disulfide oxidoreductase) and propose that its activity is linked to a thiol-based transfer of reducing equivalents in bacterial membranes. These findings expand the structural and mechanistic repertoire of flavoenzymes with oxidoreductase activity and pave the way to explore new protein engineering approaches aimed at designing redox-active proteins for diverse biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Dissulfetos/química , Flavina-Adenina Dinucleotídeo/química , Oxirredutases/química , Synechocystis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Membrana Celular/química , Membrana Celular/enzimologia , Cristalografia por Raios X , Cianobactérias/genética , Dissulfetos/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Synechocystis/genética , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
15.
J Plant Physiol ; 216: 188-196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28709027

RESUMO

The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen (1O2) and activating 1O2-mediated cell death. Thylakoids of aba1 produced twice as much 1O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1O2 generation in aba1. Up-regulation of the 1O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1O2-overproducing mutants of Arabidopsis for investigating 1O2-mediated cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Luz , Mutação/genética , Oxirredutases/metabolismo , Oxigênio Singlete/metabolismo , Estresse Fisiológico/efeitos da radiação , Arabidopsis/efeitos da radiação , Morte Celular/efeitos da radiação , Cloroplastos/efeitos da radiação , Oxigênio/metabolismo , Plantas Geneticamente Modificadas , Espectrometria de Fluorescência
16.
Anal Biochem ; 519: 27-29, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965064

RESUMO

Oxygen radical absorbance capacity (ORAC) assay in 96-well multi-detection plate readers is a rapid method to determine total antioxidant capacity (TAC) in biological samples. A disadvantage of this method is that the antioxidant inhibition reaction does not start in all of the 96 wells at the same time due to technical limitations when dispensing the free radical-generating azo initiator 2,2'-azobis (2-methyl-propanimidamide) dihydrochloride (AAPH). The time delay between wells yields a systematic error that causes statistically significant differences in TAC determination of antioxidant solutions depending on their plate position. We propose two alternative solutions to avoid this AAPH-dependent error in ORAC assays.


Assuntos
Amidinas/química , Antioxidantes/análise , Bioensaio/métodos , Capacidade de Absorbância de Radicais de Oxigênio , Ácido Ascórbico/química , Cromanos/química , Fluorescência , Ácido Gálico/química , Oxidantes/química , Espécies Reativas de Oxigênio/química
17.
Int J Biol Macromol ; 72: 718-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25246165

RESUMO

New plant peroxidase has been isolated to homogeneity from the white Spanish broom Cytisus multiflorus. The enzyme purification steps included homogenization, NH(4)SO(4) precipitation, extraction of broom colored compounds and consecutive chromatography on Phenyl-Sepharose, HiTrap™ SP HP and Superdex-75 and 200. The novel peroxidase was characterized as having a molecular weight of 50 ± 3 kDa. Steady-state tryptophan fluorescence and far-UV circular dichroism (CD) studies, together with enzymatic assays, were carried out to monitor the structural stability of C. multiflorus peroxidase (CMP) at pH 7.0. Thus changes in far-UV CD corresponded to changes in the overall secondary structure of enzyme, while changes in intrinsic tryptophan fluorescence emission corresponded to changes in the tertiary structure of the enzyme. It is shown that the process of CMP denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme, N ⟶ kD, where k is a first-order kinetic constant that changes with temperature following the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.


Assuntos
Cytisus/enzimologia , Estabilidade Enzimática , Peroxidase/isolamento & purificação , Dicroísmo Circular , Peroxidase/química , Desnaturação Proteica , Estrutura Secundária de Proteína , Temperatura
18.
J Exp Bot ; 65(12): 3081-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723397

RESUMO

Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.


Assuntos
Apoptose , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Rosa Bengala/metabolismo , Arabidopsis/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Luz , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transdução de Sinais , Oxigênio Singlete/metabolismo , Regulação para Cima
19.
J Bacteriol ; 195(8): 1727-34, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396908

RESUMO

Chlorosomes are large light-harvesting complexes found in three phyla of anoxygenic photosynthetic bacteria. Chlorosomes are primarily composed of self-assembling pigment aggregates. In addition to the main pigment, bacteriochlorophyll c, d, or e, chlorosomes also contain variable amounts of carotenoids. Here, we use X-ray scattering and electron cryomicroscopy, complemented with absorption spectroscopy and pigment analysis, to compare the morphologies, structures, and pigment compositions of chlorosomes from Chloroflexus aurantiacus grown under two different light conditions and Chlorobaculum tepidum. High-purity chlorosomes from C. aurantiacus contain about 20% more carotenoid per bacteriochlorophyll c molecule when grown under low light than when grown under high light. This accentuates the light-harvesting function of carotenoids, in addition to their photoprotective role. The low-light chlorosomes are thicker due to the overall greater content of pigments and contain domains of lamellar aggregates. Experiments where carotenoids were selectively extracted from intact chlorosomes using hexane proved that they are located in the interlamellar space, as observed previously for species belonging to the phylum Chlorobi. A fraction of the carotenoids are localized in the baseplate, where they are bound differently and cannot be removed by hexane. In C. tepidum, carotenoids cannot be extracted by hexane even from the chlorosome interior. The chemical structure of the pigments in C. tepidum may lead to π-π interactions between carotenoids and bacteriochlorophylls, preventing carotenoid extraction. The results provide information about the nature of interactions between bacteriochlorophylls and carotenoids in the protein-free environment of the chlorosome interior.


Assuntos
Carotenoides/química , Chloroflexus/metabolismo , Luz , Ficobiliproteínas/química , Ficobiliproteínas/fisiologia , Cromatóforos Bacterianos , Carotenoides/metabolismo , Chloroflexus/citologia , Estrutura Molecular , Organelas/fisiologia , Pigmentos Biológicos , Difração de Raios X
20.
PLoS One ; 7(10): e46694, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071614

RESUMO

Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.


Assuntos
Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Spinacia oleracea/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...